题目内容

【题目】函数f(x)= 的定义域是;值域是

【答案】(﹣∞,2)∪(2,+∞);(﹣∞,3)∪(3,+∞)
【解析】解:由题意:分母不能为0,即x﹣2≠0, 解得:x≠2,
∴函数的定义域为(﹣∞,2)∪(2,+∞);
函数f(x)= 化简可得:f(x)= =3+
≠0
∴f(x)≠3
∴函数的值域为(﹣∞,3)∪(3,+∞).
所以答案是:(﹣∞,2)∪(2,+∞);(﹣∞,3)∪(3,+∞).
【考点精析】掌握函数的定义域及其求法和函数的值域是解答本题的根本,需要知道求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网