题目内容
【题目】已知函数, (为自然对数的底数).
(1)设曲线在处的切线为,若与点的距离为,求的值;
(2)若对于任意实数, 恒成立,试确定的取值范围;
(3)当时,函数在上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
【答案】(1) 或 (2) (3)不存在
【解析】试题分析:
(1)该问切点横坐标已知,则利用切点在曲线上,带入曲线即可得到切点的纵坐标,对进行求导并得到在切点处的导函数值即为切线的斜率,有切线的斜率,切线又过切点,利用直线的点斜式即可求的切线的方程,利用点到直线的距离公式结合条件点到切线的距离为即可求的参数的值.
(2)该问为恒成立问题可以考虑分离参数法,即把参数a与x进行分离得到,则,再利用函数的导函数研究函数在区间的最大值,即可求的a的取值范围.
(3)根据极值的定义,函数在区间有零点且在零点附近的符号不同,求导可得,设,求求导可以得到的导函数在区间恒为正数,则函数在区间上是单调递增,即可得到函数进而得到恒成立,即在区间上没有零点,进而函数没有极值.
试题解析:
(1), .
在处的切线斜率为, 1分
∴切线的方程为,即. 3分
又切线与点距离为,所以,
解之得, 或5分
(2)∵对于任意实数恒成立,
∴若,则为任意实数时, 恒成立; 6分
若 恒成立,即,在上恒成立, 7分
设则, 8分
当时, ,则在上单调递增;
当时, ,则在上单调递减;
所以当时, 取得最大值, , 9分
所以的取值范围为.
综上,对于任意实数恒成立的实数的取值范围为. 10分
(3)依题意, ,
所以, 2分
设,则,当,
故在上单调增函数,因此在上的最小值为,
即, 12分
又所以在上, ,
即在上不存在极值. 14分
【题目】某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:
单价x(元/件) | 60 | 62 | 64 | 66 | 68 | 70 |
销量y(件) | 91 | 84 | 81 | 75 | 70 | 67 |
(I)画出散点图,并求关于的回归方程;
(II)已知该产品的成本是36元/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
【题目】全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续天监测空气质量指数,数据统计如下:
空气质量指数 | |||||
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 |
(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成頻率分布直方图:
(2)由頻率分布直方图,求该组数据的平均数与中位数;
(3)在空气质量指数分别为和的监测数据中,用分层抽样的方法抽取天,从中任意选取天,求事件 “两天空气都为良”发生的概率.