题目内容
【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以(单位:个, )表示面包的需求量, (单位:元)表示利润.
(Ⅰ)求关于的函数解析式;
(Ⅱ)根据直方图估计利润不少于元的概率;
(III)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的分布列和数学期望.
【答案】(Ⅰ);(Ⅱ)见解析.
【解析】试题分析:(Ⅰ)由题意,当时,利润,当时,利润,即可得到利润的表达式.
(Ⅱ)由题意,设利润不少于100元为事件,由(Ⅰ)知和直方图可知,即可求解概率.
(III)由题意,由于, , ,
可得利润的取值,求得各个取值的概率,即可列出分布列,求得数学期望.
试题解析:
(Ⅰ)由题意,当时,利润,
当时,利润,
即
(Ⅱ)由题意,设利润不少于100元为事件,由(Ⅰ)知,利润不少于100元时,即, ,即,
由直方图可知,当时,所求概率:
(III)由题意,由于, , ,
故利润的取值可为: , , , ,
且, , , ,
故的分布列为:
利润的数学期望
【题目】某校从高一年级随机抽取了名学生第一学期的数学学期综合成绩和物理学期综合成绩.
列表如下:
学生序号 | ||||||||||
数学学期综合成绩 | ||||||||||
物理学期综合成绩 | ||||||||||
学生序号 | ||||||||||
数学学期综合成绩 | ||||||||||
物理学期综合成绩 |
规定:综合成绩不低于分者为优秀,低于分为不优秀.
对优秀赋分,对不优秀赋分,从名学生中随机抽取名学生,若用表示这名学生两科赋分的和,求的分布列和数学期望;
根据这次抽查数据,列出列联表,能否在犯错误的概率不超过的前提下认为物理成绩与数学成绩有关?
附: ,其中
【题目】某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:
单价x(元/件) | 60 | 62 | 64 | 66 | 68 | 70 |
销量y(件) | 91 | 84 | 81 | 75 | 70 | 67 |
(I)画出散点图,并求关于的回归方程;
(II)已知该产品的成本是36元/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?
附:回归直线的斜率和截距的最小二乘法估计公式分别为: