题目内容
(本题满分16分)
函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线3x+y+2=0.
(1)求a,b的值; (2)求函数的极大值与极小值的差.
函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线3x+y+2=0.
(1)求a,b的值; (2)求函数的极大值与极小值的差.
(1)a=-1,b=0
(2)4
(2)4
(1)f¢(x)=3x2+6ax+3b.令f¢(x)=0,得3x2+6ax+3b=0(Ⅰ),因为f(x)在x=2处有极值,所以,x=2是方程(Ⅰ)的根,代入得4+4a+b=0 ①;又图象在x=1处的切线平行于直线3x+y+2=0,故y¢|x=1=-3,即3+6a+3b=-3 ②.所以由①,②解得a=-1,b=0.
(2)由(1)知f(x)=x3-3x2+c,f¢(x)=3x2-6x.f¢(x)=0的另一个根为x=0.列表如下:
因此,当x=0时,f(x)有极大值f(0)=c;当x=2时,f(x)有极小值f(2)=c-4.所以,所求的极大值与极小值之差为c-(c-4)=4.
(2)由(1)知f(x)=x3-3x2+c,f¢(x)=3x2-6x.f¢(x)=0的另一个根为x=0.列表如下:
x | (-∞,0) | 0 | (0,2) | 2 | (2,+∞) |
f¢(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
因此,当x=0时,f(x)有极大值f(0)=c;当x=2时,f(x)有极小值f(2)=c-4.所以,所求的极大值与极小值之差为c-(c-4)=4.
练习册系列答案
相关题目