题目内容
【题目】如图,在等腰梯形ABCD中, ,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得面BEFC⊥面ADFE,若动点P∈平面ADFE,设PB,PC与平面ADFE所成的角分别为θ1 , θ2(θ1 , θ2均不为0).若θ1=θ2 , 则动点P的轨迹为( )
A.直线
B.椭圆
C.圆
D.抛物线
【答案】C
【解析】解:由题意,PE=BEcotθ1 , PF=CFcotθ2 ,
∵BE= CF,θ1=θ2 ,
∴PE= PF.
以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系,设E(﹣a,0),F(a,0),P(x,y),则
(x+a)2+y2= [(x﹣a)2+y2],
∴3x2+3y2+10ax+3a2=0,轨迹为圆.
故选:C.
练习册系列答案
相关题目
【题目】为了解人们对某种食材营养价值的认识程度,某档健康养生电视节目组织名营养专家和名现场观众各组成一个评分小组,给食材的营养价值打分(十分制).下面是两个小组的打分数据:
第一小组 | ||||||||
第二小组 |
(1)求第一小组数据的中位数与平均数,用这两个数字特征中的哪一种来描述第一小组打分的情况更合适?说明你的理由.
(2)你能否判断第一小组与第二小组哪一个更像是由营养专家组成的吗?请比较数字特征并说明理由.
(3)节目组收集了烹饪该食材的加热时间:(单位:)与其营养成分保留百分比的有关数据:
食材的加热时间(单位:) | ||||||
营养成分保留百分比 |
在答题卡上画出散点图,求关于的线性回归方程(系数精确到),并说明回归方程中斜率的含义.
附注:参考数据:,.
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,.