题目内容
【题目】已知函数,.
(1)当时,求函数的单调区间和极值;
(2)若对于任意,都有成立,求实数的取值范围;
(3)若,且,证明:.
【答案】(1)答案见解析;(2);(3)证明见解析.
【解析】试题分析:(1)由题意x>0,由此根据k≤0,k>0利用导数性质分类讨论,能求出函数f(x)的单调区间和极值.
(2)问题转化为,对于x∈[e,e2]恒成立,令,则,令,由此利用导数性质能求出实数k的取值范围.
(3)设,则,要证,只要证,即证,由此利用导数性质能证明.
试题解析:
(1),
①时,因为,所以,
函数的单调递增区间是,无单调递减区间,无极值;
②当时,令,解得,
当时,;当,.
所以函数的单调递减区间是,单调递增区间是,
在区间上的极小值为,无极大值.
(2)由题意,,
即问题转化为对于恒成立,
即对于恒成立,
令,则,
令,则,
所以在区间上单调递增,故,故,
所以在区间上单调递增,函数.
要使对于恒成立,只要,
所以,即实数k的取值范围为.
(3)证法1 因为,由(1)知,函数在区间上单调递减,在区间上单调递增,且.
不妨设,则,
要证,只要证,即证.
因为在区间上单调递增,所以,
又,即证,
构造函数,
即,.
,
因为,所以,即,
所以函数在区间上单调递增,故,
而,故,
所以,即,所以成立.
证法2 要证成立,只要证:.
因为,且,所以,
即,,
即,
,同理,
从而,
要证,只要证,
令不妨设,则,
即证,即证,
即证对恒成立,
设,,
所以在单调递增,,得证,所以.
【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | ① | ||
第3组 | 30 | ② | |
第4组 | 20 | ||
第5组 | 10 |
(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.