题目内容
【题目】设函数f(x)=|x+4|.
(1)若y=f(2x+a)+f(2x﹣a)最小值为4,求a的值;
(2)求不等式f(x)>1﹣ x的解集.
【答案】
(1)解:由题意,函数f(x)=|x+4|.
那么y=f(2x+a)+f(2x﹣a)=|2x+a+4|+|2x﹣a+4|≥|2x+a﹣4﹣(2x﹣a+4)|=|2a|
∵最小值为4,即|2a|=3,
∴a=
(2)解:函数f(x)=|x+4|=
∴不等式f(x)>1﹣ x等价于 ,解得:x>﹣2或x<﹣4
故得不等式f(x)>1﹣ x的解集为{x|x>﹣2或x<﹣4}
【解析】(1)求出y的解析式,利用绝对值不等式即可求解a的值.(2)函数含有绝对值,即可考虑到分类讨论去掉绝对值号,分别讨论当x=﹣4时,当x>﹣4时,当x<﹣4的情况,可得不同解析式求解不等式即可.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
【题目】2016年6月22日“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15—75岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为: .把年龄落在区间自和 内的人分别称为“青少年”和“中老年”.
关注 | 不关注 | 合计 | |
青少年 | 15 | ||
中老年 | |||
合计 | 50 | 50 | 100 |
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;
(2)根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;
临界值表:
附:参考公式
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.