题目内容
【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.
【答案】(1);(2).
【解析】
试题分析:(1)由题意知,,解此不等式组得出函数g(x)的定义域.
(2)等式g(x)≤0,即 f(x﹣1)≤﹣f(3﹣2x)=f(2x﹣3),有,解此不等式组,
可得结果.
解:(1)∵数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).
∴,∴<x<,函数g(x)的定义域(,).
(2)∵f(x)是奇函数且在定义域内单调递减,不等式g(x)≤0,
∴f(x﹣1)≤﹣f(3﹣2x)=f(2x﹣3),∴,∴<x≤2,
故不等式g(x)≤0的解集是 (,2].
练习册系列答案
相关题目