题目内容

已知函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x2-2x,
(1)求出函数f(x)在R上的解析式;
(2)画出函数f(x)的图象.
(1)①当x=0时,f(0)=0;(2分)
②当x<0时,-x>0,
∵f(x)是奇函数,
∴f(-x)=-f(x)
∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x(5分)
综上:f(x)=
x2-2x
0
-x2-2x
x>0
x=0
x<0
(2分)
(2)函数f(x)=
x2-2x
0
-x2-2x
x>0
x=0
x<0
的图象如下图所示:
(6分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网