题目内容
已知定义在R上的函数f(x)=2x+
,
(1)若f(x)为偶函数,求a的值;
(2)若f(x)在[0,+∞)上单调递增,求a的取值范围.
a |
2x |
(1)若f(x)为偶函数,求a的值;
(2)若f(x)在[0,+∞)上单调递增,求a的取值范围.
(1)若f(x)为偶函数,则f(-x)=f(x),
即2-x+
=2x+
,
∴2-x+a•2x=2x+a•2-x,
又对任意的x∈R都成立,
∴a=1.
(2)若f(x)在[0,+∞)上单调递增,
则设0≤x1<x2,
则f(x1)-f(x2)<0,
即f(x1)-f(x2)=2x1+
-2x2-
=(2x1-2x2)(1-
)<0,
∵0≤x1<x2,
∴2x1-2x2<0,
即1-
>0,
∴a<2x1?2x2=2x1+x2,
∵0≤x1<x2,
∴2x1+x2>1,
即a≤1.
即2-x+
a |
2-x |
a |
2x |
∴2-x+a•2x=2x+a•2-x,
又对任意的x∈R都成立,
∴a=1.
(2)若f(x)在[0,+∞)上单调递增,
则设0≤x1<x2,
则f(x1)-f(x2)<0,
即f(x1)-f(x2)=2x1+
a |
2x1 |
a |
2x2 |
a |
2x1?2x2 |
∵0≤x1<x2,
∴2x1-2x2<0,
即1-
a |
2x1?2x2 |
∴a<2x1?2x2=2x1+x2,
∵0≤x1<x2,
∴2x1+x2>1,
即a≤1.
练习册系列答案
相关题目