题目内容

f(x)=a-
2
2x+1
,其中a为常数;
(1)f(x)为奇函数,试确定a的值;
(2)若不等式f(x)+a>0恒成立,求实数a的取值范围.
(1)∵f(x)为奇函数,
∴f(-x)=-f(x),即a-
2
2-x+1
=-a+
2
2x+1

∴2a=
2
2-x+1
+
2
2x+1
=
2•2x
1+2x
+
2
2x+1
=2,
∴a=1;
(2)f(x)+a>0恒成立,即a-
2
2x+1
+a>0,2a>
2
2x+1
恒成立,等价于2a>(
2
2x+1
max
而2x>0,2x+1>1,∴0<
2
2x+1
<2,
故2a≥2,解得a≥1,
故实数a的取值范围[1,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网