题目内容
2.设函数f(x)=$\frac{1}{{1+px+q{x^2}}}$(其中p2+q2≠0),且存在无穷数列{an},使得函数在其定义域内还可以表示为f(x)=1+a1x+a2x2+…+anxn+….(1)求a2(用p,q表示);
(2)当p=-1,q=-1时,令bn=$\frac{{{a_{n+1}}}}{{{a_n}{a_{n+2}}}}$,设数列{bn}的前n项和为Sn,求证:Sn<$\frac{3}{2}$;
(3)若数列{an}是公差不为零的等差数列,求{an}的通项公式.
分析 (1)由f(x)=$\frac{1}{{1+px+q{x^2}}}$得$(1+px+q{x^2})(1+{a_1}x+{a_2}{x^2}+…+{a_n}{x^n}+…)=1$,然后利用展开式含未知量的系数为0求得a2;
(2)由已知求出数列前两项,再由xn(n≥3)的系数为0得数列递推式,代入bn=$\frac{{{a_{n+1}}}}{{{a_n}{a_{n+2}}}}$后利用裂项相消法求数列{bn}的前n项和为Sn,放大后证得Sn<$\frac{3}{2}$;
(3)由(2)an+pan-1+qan-2=0,再由数列{an}是等差数列,得an-2an-1+an-2=0,则(2+p)an-1=(1-q)an-2对一切n≥3都成立,然后排出数列为常数列的情况,在结合数列前两项即可求得数列通项公式.
解答 (1)解:由题意,得$(1+px+q{x^2})(1+{a_1}x+{a_2}{x^2}+…+{a_n}{x^n}+…)=1$,
显然x,x2的系数为0,
∴$\left\{\begin{array}{l}{a_1}+p=0\\{a_2}+{a_1}p+q=0\end{array}\right.$,从而a1=-p,${a_2}={p^2}-q$;
(2)证明:由p=-1,q=-1,考虑xn(n≥3)的系数,则有an+pan-1+qan-2=0,
得$\left\{\begin{array}{l}{a_1}=1\\{a_2}=2\\{a_n}-{a_{n-1}}-{a_{n-2}}=0(n≥3)\end{array}\right.$,即an+2=an+1+an,
∴数列{an}单调递增,且${b_n}=\frac{{{a_{n+2}}-{a_n}}}{{{a_n}{a_{n+2}}}}=\frac{1}{a_n}-\frac{1}{{{a_{n+2}}}}$,
∴${S_n}=(\frac{1}{a_1}-\frac{1}{a_3})+(\frac{1}{a_2}-\frac{1}{a_4})+(\frac{1}{a_3}-\frac{1}{a_5})+…+(\frac{1}{a_n}-\frac{1}{{{a_{n+2}}}})$,
当n≥2时,${S_n}=\frac{1}{a_1}+\frac{1}{a_2}-\frac{1}{{{a_{n+1}}}}-\frac{1}{{{a_{n+2}}}}=\frac{3}{2}-\frac{1}{{{a_{n+1}}}}-\frac{1}{{{a_{n+2}}}}<\frac{3}{2}$.
又${a}_{1}=1<\frac{3}{2}$成立,
∴Sn<$\frac{3}{2}$;
(3)解:由(2)an+pan-1+qan-2=0,
∵数列{an}是等差数列,∴an-2an-1+an-2=0,则(2+p)an-1=(1-q)an-2对一切n≥3都成立,
若an=0,则p=q=0,与p2+q2≠0矛盾,
若数列{an}是等比数列,又据题意{an}是等差数列,则{an}是常数列,这与数列{an}的公差不为零矛盾,
∴2+p=1-q=0,即p=-2,q=1,
由(1)知a1=2,a2=3,∴an=n+1.
点评 本题考查了数列的函数特性,考查了数列递推式,训练了裂项相消法求数列的和,考查了等差数列通项公式的求法,是中档题.
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
A. | a<b<c | B. | c<b<a | C. | b<a<c | D. | a<c<b |
A. | $-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$ | B. | $\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$ | C. | $-\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$ | D. | $\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$ |