题目内容

9.用反证法证明命题“若a+b+c≥0,abc≤0,则a、b、c三个实数中最多有一个小于零”的反设内容为(  )
A.a、b、c三个实数中最多有一个不大于零
B.a、b、c三个实数中最多有两个小于零
C.a、b、c三个实数中至少有两个小于零
D.a、b、c三个实数中至少有一个不大于零

分析 用反证法证明数学命题时,应先假设命题的否定成立,而命题“a、b、c三个实数中最多有一个小于零”的否定为:“a、b、c三个实数中至少有两个小于零”,由此得出结论.

解答 解:用反证法证明数学命题时,应先假设命题的否定成立,
而命题“a、b、c三个实数中最多有一个小于零”的否定为:“a、b、c三个实数中至少有两个小于零”,
故应假设的内容是:a、b、c三个实数中至少有两个小于零.
故选:C.

点评 本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网