题目内容
18.(1)设k,n∈N*,k≤n,求证:kC${\;}_{n}^{k}$=nC${\;}_{n-1}^{k-1}$;(2)设n∈N*,n≥2,x∈R.
①求证:$\sum_{k=0}^{n}$(k+1)C${\;}_{n}^{k}$xk(1-x)n-k=nx+1;
②求函数f(x)=$\sum_{k=0}^{n}$k${\;}^{2}{C}_{n}^{k}$xk(1-x)n-k的零点.
分析 (1)由条件利用组合数的性质以及计算公式,证得kC${\;}_{n}^{k}$=nC${\;}_{n-1}^{k-1}$ 成立.
(2)由条件利用组合数的性质化简函数的解析式,再利用函数零点的定义求出函数f(x)=$\sum_{k=0}^{n}$k${\;}^{2}{C}_{n}^{k}$xk(1-x)n-k的零点.
解答 (1)证明:∵kC${\;}_{n}^{k}$=k•$\frac{n!}{(n-k)!k!}$=$\frac{n!}{(n-k)!•(k-1)!}$,又nC${\;}_{n-1}^{k-1}$=n•$\frac{(n-1)!}{(k-1)!•(n-k)!}$=$\frac{n!}{(n-k)!•(k-1)!}$,
∴kC${\;}_{n}^{k}$=nC${\;}_{n-1}^{k-1}$ 成立.
(2)①∵n∈N*,n≥2,x∈R时,$\sum_{k=0}^{n}$(k+1)C${\;}_{n}^{k}$xk(1-x)n-k=$\sum_{k=1}^{n}k{•C}_{n}^{k}{•x}^{k}{•(1-x)}^{n-k}$+$\sum_{k=1}^{n}$•${C}_{n}^{k}$•xk•(1-x)n-k,
=$\sum_{k=1}^{n}$•n•${C}_{n-1}^{k-1}$•xk•(1-x)n-k+[(1-x)+x]n=nx•$\sum_{k=1}^{n}$•n•${C}_{n-1}^{k-1}$•xk-1•(1-x)n-k+1=nx[(1-x)+x]n-1+1=nx+1,
∴$\sum_{k=0}^{n}$(k+1)C${\;}_{n}^{k}$xk(1-x)n-k=nx+1成立.
②函数f(x)=$\sum_{k=0}^{n}$k${\;}^{2}{C}_{n}^{k}$xk(1-x)n-k=$\sum_{k=0}^{n}$ k•k${C}_{n}^{k}$•xk(1-x)n-k=$\sum_{k=1}^{n}$ k•n•${C}_{n-1}^{k-1}$•xk(1-x)n-k
=n$\sum_{k=1}^{n}$(k-1+1)•${C}_{n-1}^{k-1}$•xk(1-x)n-k =n$\sum_{k=1}^{n}$(k-1)•${C}_{n-1}^{k-1}$•xk(1-x)n-k+n$\sum_{k=1}^{n}$•${C}_{n-1}^{k-1}$•xk(1-x)n-k
=n$\sum_{k=1}^{n}$(n-1)•${C}_{n-2}^{k-2}$•xk(1-x)n-k +nx$\sum_{k=1}^{n}$•${C}_{n-1}^{k-1}$•xk-1(1-x)n-k ,
=n(n-1)x2•$\sum_{k=2}^{n}$•${C}_{n-2}^{k-2}$•xk-2(1-x)n-k +nx$\sum_{k=1}^{n}$•${C}_{n-1}^{k-1}$•xk(1-x)n-k =
=n(n-1)x2•[(1-x)+x]n-2+nx[(1-x)+x]n-1=n(n-1)x2+nx,
令f(x)=0,求得x=0,或x=$\frac{1}{1-n}$,
故函数f(x)的零点为9或$\frac{1}{1-n}$.
点评 本题主要考查二项式定理的应用,组合数的性质以及组合数的试算公式,属于中档题.
A. | a、b、c三个实数中最多有一个不大于零 | |
B. | a、b、c三个实数中最多有两个小于零 | |
C. | a、b、c三个实数中至少有两个小于零 | |
D. | a、b、c三个实数中至少有一个不大于零 |
A. | $\overrightarrow{a}-\frac{1}{2}\overrightarrow{b}$ | B. | $\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$ | C. | -$\overrightarrow{a}-\frac{1}{2}\overrightarrow{b}$ | D. | -$\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$ |
A. | $\frac{a}{b-1}$ | B. | $\frac{3}{2(b-1)}$ | C. | $\frac{3a}{2(b+1)}$ | D. | $\frac{3(a-1)}{2b}$ |