题目内容

13.已知函数f(x)=$\frac{1}{3}$x3+$\frac{4}{3}$
(Ⅰ)求函数f(x)在点P(2,4)处的切线方程;
(Ⅱ)求过点P(2,4)的函数f(x)的切线方程.

分析 (Ⅰ)先求出函数f(x)的导数,求出斜率k=4,从而求出切线方程;
(Ⅱ)设出切点,表示出切线方程,将P(2,4)代入切线方程即可求出答案.

解答 解:(Ⅰ)∵f′(x)=x2
∴在点P(2,4)处的切线的斜率k=f′(2)=4,
∴函数f(x)在点P处的切线方程为y-4=4(x-2),
即4x-y-4=0
(Ⅱ)设函数f(x)与过点P(2,4)的切线相切于点$A({x_0},\frac{1}{3}{x_0}^3+\frac{4}{3})$,
则切线的斜率$k={f^'}({x_0})={x_0}^2$
∴切线方程为$y-(\frac{1}{3}{x_0}^3+\frac{4}{3})={x_0}^2(x-{x_0})$,
即$y={x_0}^2•x-\frac{2}{3}{x_0}^3+\frac{4}{3}$
∵点P(2,4)在切线上
∴4=2${{x}_{0}}^{2}$-$\frac{2}{3}$${{x}_{0}}^{3}$+$\frac{4}{3}$即:${{x}_{0}}^{3}$-3${{x}_{0}}^{2}$+4=0,
∴(x0+1)${{(x}_{0}-2)}^{2}$=0,解得:x0=-1或x0=2,
∴所求的切线方程为x-y+2=0或4x-y-4=0.

点评 本题考查了曲线的切线方程问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网