题目内容
8.已知f(x)=$\left\{\begin{array}{l}{(1-2a)x+3a,}&{x<1}\\{lnx,}&{x≥1}\end{array}\right.$的值域为R,那么a的取值范围是( )A. | (-∞,-1] | B. | (-1,$\frac{1}{2}$) | C. | [-1,$\frac{1}{2}$) | D. | (0,$\frac{1}{2}$) |
分析 根据函数解析式得出x≥1,lnx≥0,由题意可得(1-2a)x+3a必须取到所有的负数,即满足:$\left\{\begin{array}{l}{1-2a>0}\\{1-2a+3a≥0}\end{array}\right.$,求解即可.
解答 解:∵f(x)=$\left\{\begin{array}{l}{(1-2a)x+3a,}&{x<1}\\{lnx,}&{x≥1}\end{array}\right.$,
∴x≥1,lnx≥0,
∵值域为R,
∴(1-2a)x+3a必须取到所有的负数,
即满足:$\left\{\begin{array}{l}{1-2a>0}\\{1-2a+3a≥0}\end{array}\right.$,即为$\left\{\begin{array}{l}{a<\frac{1}{2}}\\{a≥-1}\end{array}\right.$,
即-1≤a<$\frac{1}{2}$,
故选C.
点评 本题考查了函数的性质,运用单调性得出不等式组即可,难度不大,属于中档题.
练习册系列答案
相关题目
2.下列说法错误的是( )
A. | 设有一个回归方程为$\widehat{y}$=3-5x,则变量x每增加一个单位,y平均增加5个单位 | |
B. | 回归直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$必过点($\overline{x}$,$\overline{y}$) | |
C. | 在一个2×2列联表中,由计算得随机变量K2的观测值k=13.079,则可以在犯错误的概率不超过0.001的前提下,认为这两个变量间有关系 | |
D. | 将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变 |
3.下列角的终边与37°角的终边在同一直线上的是( )
A. | -37° | B. | 143° | C. | 379° | D. | -143° |