题目内容
【题目】如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1的中点.
求证:AD⊥平面A1DC1.
【答案】解:证明:∵AA1⊥底面ABC,平面A1B1C1∥平面ABC, ∴AA1⊥平面A1B1C1 ,
∴A1C1⊥AA1.又∠B1A1C1=90°,∴A1C1⊥A1B1 , 又A1B1∩AA1=A1 ,
∴A1C1⊥平面AA1B1B,又AD平面AA1B1B,∴A1C1⊥AD.
由已知计算得AD= ,A1D= ,又AA1=2,∴AD2+A1D2=AA ,∴A1D⊥AD,∵A1C1∩A1D=A1 , ∴AD⊥平面A1DC1
【解析】通过证明AD与平面内两条相交直线都垂直来证明。
【考点精析】利用直线与平面垂直的判定对题目进行判断即可得到答案,需要熟知一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
练习册系列答案
相关题目