题目内容
11.某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 | 乙 | 原料限额 | |
A(吨) | 3 | 2 | 12 |
B(吨) | 1 | 2 | 8 |
A. | 12万元 | B. | 16万元 | C. | 17万元 | D. | 18万元 |
分析 设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.
解答 解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,
则$\left\{\begin{array}{l}{3x+2y≤12}\\{x+2y≤8}\\{x≥0,y≥0}\end{array}\right.$,
目标函数为 z=3x+4y.
作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.
由z=3x+4y得y=-$\frac{3}{4}$x+$\frac{z}{4}$,
平移直线y=-$\frac{3}{4}$x+$\frac{z}{4}$由图象可知当直线y=-$\frac{3}{4}$x+$\frac{z}{4}$经过点B时,直线y=-$\frac{3}{4}$x+$\frac{z}{4}$的截距最大,
此时z最大,
解方程组$\left\{\begin{array}{l}{3x+2y=12}\\{x+2y=8}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,
即B的坐标为x=2,y=3,
∴zmax=3x+4y=6+12=18.
即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,
故选:D.
点评 本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
1.执行如图所示的程序框图,输出的k值为( )
A. | 3 | B. | 4 | C. | 5 | D. | 6 |