题目内容
【题目】在中,已知(sin A+sin B+sin C)·(sin B+sin C-sin A)=3sin Bsin C.
(Ⅰ)求角A的值;
(Ⅱ)求sin B-cos C的最大值.
【答案】(1) ;(2)1.
【解析】试题分析:由正弦定理得(a+b+c)(b+c-a)=3bc,再由余弦定理得b2+c2-a2=bc,∴cos A=,A=。(2)sin B-cos C,两角化一角,求最值;
(Ⅰ)∵(sin A+sin B+sin C)(sin B+sin C-sin A)=3sin Bsin C,
∴由正弦定理得(a+b+c)(b+c-a)=3bc,
∴b2+c2-a2=bc,∴cos A= .
∵A∈(0,π),∴A= .
(Ⅱ)由A= 得B+C=,
∴sin B-cos C
=sin B-cos
=sin.
∵0<B<,∴<B+<,
∴当B+=,即B=时, sin B-cos C的最大值为1.
练习册系列答案
相关题目