题目内容
【题目】已知,若存在三个不同实数使得,则的取值范围是( )
A.B.C.D.(0,1)
【答案】C
【解析】
先画出分段函数f(x)的图象,然后根据图象分析a、b、c的取值范围,再根据对数函数以及绝对值函数的性质得出bc=1,即可得到abc的取值范围.
由题意,画出函数f(x)的图象大致如图所示:
∵存在三个不同实数a,b,c,使得f(a)=f(b)=f(c),可假设a<b<c,
∴根据函数图象,可知:﹣2<a≤0,0<b<1,c>1.又∵f(b)=f(c),
∴|log2019b|=|log2019c|,即:﹣log2019b=log2019c.∴log2019b+log2019c=0.
∴log2019bc=0,即bc=1.∴abc=a.∵﹣2<a≤0,∴﹣2<abc≤0.
故选:C.
【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得: , , , ,
,线性回归模型的残差平方和,e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);
(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.
( i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为
=;相关指数R2=.