题目内容

【题目】已知向量,设

(1)求函数的解析式及单调递增区间;

(2)在中,分别为内角的对边,且,求的面积.

【答案】(1)[-;(2)面积为 .

【解析】分析:(I)根据向量数量积的坐标公式得出f(x),利用二倍角公式,两角和的正弦函数公式化简,根据正弦函数的单调性得出f(x)的单调区间;

(II)根据f(A)=1A的范围解出A,利用余弦定理得出bc,代入面积公式S=bcsinA即可.

详解:(I)f(x)=sinxcosx+cos2x=sin2x+cos2x+=

,.得[-

所以函数的单调递增区间为[-

(II)∵f(A)=sin(2A+)+=1,∴sin(2A+)=

∵0<A<π,∴<2A+,∴2A+=,即A=

由余弦定理得:a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA,∴1=4﹣3bc,∴bc=1.

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网