题目内容

数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*).
(1)求数列{an}的通项an;
(2)求数列{nan}的前n项和Tn.
(1)∵an+1=2Sn,∴Sn+1-Sn=2Sn,∴=3.
又∵S1=a1=1,
∴数列{Sn}是首项为1、公比为3的等比数列,
Sn=3n-1(n∈N*).
当n≥2时,an=2Sn-1=2·3n-2(n≥2),
∴an=
(2)Tn=a1+2a2+3a3+…+nan.
当n=1时,T1=1;
当n≥2时,Tn=1+4·30+6·31+…+2n·3n-2,                            ①
3Tn=3+4·31+6·32+…+2n·3n-1,                                   ②
①-②得:
-2Tn=-2+4+2(31+32+…+3n-2)-2n·3n-1
=2+2·-2n·3n-1
=-1+(1-2n)·3n-1.
∴Tn=+·3n-1(n≥2).
又∵T1=a1=1也满足上式,
∴Tn=+3n-1(n-) (n∈N*).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网