题目内容

如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则(   ).
A.50B.35C.32D.41
B
解:不妨设P点是椭圆上的任意点则由椭圆的第二定义可得:|PF| a2 c - x =" c" a 又a=5,b=4,c=" a2-" b2 =3故|PF|="5-3" 5 x
∵把椭圆x2 25 +y2 16 =1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点
∴p4点为椭圆与Y轴正半轴的交点且P1,P2,P3与P5,P6,P7分别关于Y轴对称
∴不妨设p1(x1,y1),p2(x2,y2),p3(x3,y3)且x1<0,x2<0,x3<0,p4(0,4)
∴p5(-x3,y3),p6(-x2,y2),p7(-x1,y1)
∴由①可得|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=(5-3 5 x1)+(5-3 5 x2)+(5-3 5 x3)+(5-3 5 ×0)+ (5+3 5 x3)+(5+3 5 x2)+(5+3 5 x1)
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=5×7=35
故答案选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网