题目内容

(本小题共13分)已知椭圆的右焦点为为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线交椭圆于两点, 且使点为△的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.
解:(Ⅰ)由△是等腰直角三角形,得
故椭圆方程为.                      …………5分
(Ⅱ)假设存在直线交椭圆于两点,且为△的垂心,

因为,故.                    …………7分
于是设直线的方程为

,得, 且,.   ……9分
由题意应有,又



整理得
解得.                              …………12分
经检验,当时,△不存在,故舍去
时,所求直线存在,且直线的方程为
…………13分
本题考查椭圆的方程和直线与椭圆的相交问题,考查学生利用待定系数法和解析法的解题能力. 待定系数法:如果题目给出是何曲线,可根据题目条件,恰当的设出曲线方程,然后借助条件进一步确定求椭圆的标准方程应从“定形”“定式”“定量”三个方面去思考。“定形”是指对称中心在原点,焦点在哪条对称轴上;“定式”是指根据“形”设出相应的椭圆方程的具体形式;“定量”是指利用定义法或待定系数法确定的值.本题第一问利用椭圆的离心率和直线与椭圆相切判别式为0得到两个等式求解的值;关于直线与圆锥曲线位置关系的存在性问题,一般先假设存在满足题意的元素,经过推理论证,如果得到可以成立的结果,就可以作出存在的结论;若得到与已知条件、定义、公理、定理、性质相矛盾的量,则说明假设不成立.本题的第二问就是利用这个解题思路,借助韦达定理和距离公式进行转化和探索.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网