题目内容
【题目】已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为__________.
【答案】
【解析】
根据题意,分析可得f(x+1)﹣f(x+2)>2x+3f(x+1)+(x+1)2>f(x+2)+(x+2)2g(x+1)>g(x+2),由函数奇偶性的定义分析可得g(x)为偶函数,结合函数的单调性分析可得g(x+1)>g(x+2)|x+1|>|x+2|,解可得x的取值范围,即可得答案.
根据题意,g(x)=f(x)+x2,
则f(x+1)﹣f(x+2)>2x+3f(x+1)+(x+1)2>f(x+2)+(x+2)2g(x+1)>g(x+2),
若f(x)为偶函数,则g(﹣x)=f(﹣x)+(﹣x)2=f(x)+x2=g(x),即可得函数g(x)为偶函数,
又由当x∈(﹣∞,0]时,g(x)单调递增,则g(x)在[0,+∞)上递减,
则g(x+1)>g(x+2)|x+1|<|x+2|(x+1)2<(x+2)2,解可得x,
即不等式的解集为(,+∞);
故答案为:(,+∞).
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程=x+;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想.
附:(参考数据)