ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÔ²C1µÄÔ²ÐÄÔÚ×ø±êÔµãO£¬ÇÒÇ¡ºÃÓëÖ±Ïßl1£ºx-2y+3$\sqrt{5}$=0ÏàÇУ¬µãAΪԲÉÏÒ»¶¯µã£¬AM¡ÍxÖáÓÚµãM£¬ÇÒ¶¯µãNÂú×ã$\overrightarrow{ON}=\frac{2}{3}\overrightarrow{OA}+£¨{\frac{{2\sqrt{2}}}{3}-\frac{2}{3}}£©\overrightarrow{OM}$£¬É趯µãNµÄ¹ì¼£ÎªÇúÏßC£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÍÖÔ²CÏཻÓÚ²»Í¬Á½µãA£¬B£¬ÇÒÂú×ã$\overrightarrow{OA}¡Í\overrightarrow{OB}$£¨OΪ×ø±êԵ㣩£¬ÇóÏ߶ÎAB³¤¶ÈµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨¢ñ£©Éè³ö¶¯µãN£¨x£¬y£©£¬A£¨x0£¬y0£©£¬M£¨x0£¬0£©£¬ÓÉÌâÒâÇóÔ²C1µÄ·½³Ì£¬½áºÏÒÑÖª$\overrightarrow{ON}=\frac{2}{3}\overrightarrow{OA}+£¨{\frac{{2\sqrt{2}}}{3}-\frac{2}{3}}£©\overrightarrow{OM}$£¬°ÑAµÄ×ø±êÓÃNµÄ×ø±ê±íʾ£¬´úÈëÔ²µÄ·½³ÌÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¼ÙÉèÖ±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÆä·½³ÌΪy=kx+m£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓÃ$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬½áºÏ¸ùԡϵÊýµÄ¹ØϵµÃµ½3m2=8k2+8£®ÔÙÀûÓÃÏÒ³¤¹«Ê½ÇóµÃÏÒABµÄ³¤£¬ÀûÓûù±¾²»µÈʽ¼°º¯ÊýµÄÐÔÖÊÇóµÃ|AB|µÄ·¶Î§£»ÈôÖ±ÏßlµÄбÂʲ»´æÔÚ£¬Ö±½ÓÇó³öA£¬BµÄ×ø±êµÃµ½|AB|µÄÖµ£¬ÔòÏ߶ÎAB³¤¶ÈµÄÈ¡Öµ·¶Î§¿ÉÇó£®
½â´ð ½â£º£¨¢ñ£©É趯µãN£¨x£¬y£©£¬A£¨x0£¬y0£©£¬
¡ßAM¡ÍxÖáÓÚµãM£¬¡àM£¨x0£¬0£©£¬
ÉèÔ²C1 µÄ·½³ÌΪx2+y2=r2£¬ÓÉÌâÒâµÃ$r=\frac{|3\sqrt{5}|}{\sqrt{1+4}}=3$£¬
¡àÔ²C1 µÄ·½³ÌΪx2+y2=9£®
ÓÉÌâÒ⣬$\overrightarrow{ON}=\frac{2}{3}\overrightarrow{OA}+£¨{\frac{{2\sqrt{2}}}{3}-\frac{2}{3}}£©\overrightarrow{OM}$£¬µÃ$£¨x£¬y£©=\frac{2}{3}£¨{x}_{0}£¬{y}_{0}£©+£¨\frac{2\sqrt{2}}{3}-\frac{2}{3}£©£¨{x}_{0}£¬0£©$£¬
¡à$\left\{\begin{array}{l}{x=\frac{2\sqrt{2}}{3}{x}_{0}}\\{y=\frac{2}{3}{y}_{0}}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{{x}_{0}=\frac{3}{2\sqrt{2}}x}\\{{y}_{0}=\frac{3}{2}y}\end{array}\right.$£¬
½«A£¨$\frac{3}{2\sqrt{2}}x£¬\frac{3}{2}y$£©´úÈëx2+y2=9£¬µÃ¶¯µãNµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£»
£¨¢ò£©£¨1£©¼ÙÉèÖ±ÏßlµÄбÂÊ´æÔÚ£¬ÉèÆä·½³ÌΪy=kx+m£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+2{y}^{2}=8}\end{array}\right.$£¬¿ÉµÃ£¨1+2k2£©x2+4kmx+2m2-8=0£®
¡à¡÷=64k2-8m2+32£¾0£®
${x}_{1}+{x}_{2}=-\frac{4km}{1+2{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{2{m}^{2}-8}{1+2{k}^{2}}$£¬£¨*£©
¡ß$\overrightarrow{OA}¡Í\overrightarrow{OB}$£¬¡à$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬Ôòx1x2+£¨kx1+m£©£¨kx2+m£©=0£¬
»¯¼ò¿ÉµÃ£¬$£¨{k}^{2}+1£©{x}_{1}{x}_{2}+km£¨{x}_{1}+{x}_{2}£©+{m}^{2}=0$£®
½«£¨*£©´úÈë¿ÉµÃ3m2=8k2+8£®
ÓÖ¡ß|AB|=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|=\sqrt{1+{k}^{2}}\frac{\sqrt{64{k}^{2}-8{m}^{2}32}}{1+2{k}^{2}}$£®
½«${m}^{2}=\frac{8}{3}£¨{k}^{2}+1£©$´úÈ룬¿ÉµÃ$|AB|=\sqrt{1+{k}^{2}}•\frac{\sqrt{\frac{2¡Á64{k}^{2}}{3}+\frac{32}{3}}}{1+2{k}^{2}}$=$\sqrt{\frac{32}{3}}•\sqrt{1+\frac{{k}^{2}}{1+4{k}^{4}+4{k}^{2}}}$
=$\sqrt{\frac{32}{3}}•\sqrt{1+\frac{1}{\frac{1}{{k}^{2}}+4{k}^{2}+4}}$$¡Ü2\sqrt{3}$£®
¡àµ±ÇÒ½öµ±${k}^{2}=\frac{1}{2}$£¬¼´$k=¡À\frac{\sqrt{2}}{2}$ʱµÈºÅ³ÉÁ¢£®
ÓÖÓÉ$\frac{{k}^{2}}{1+4{k}^{4}+4{k}^{2}}¡Ý0$£¬¡à|AB|$¡Ý\sqrt{\frac{32}{3}}=\frac{4\sqrt{6}}{3}$£®
¡à$\frac{4\sqrt{6}}{3}¡Ü|AB|¡Ü2\sqrt{3}$£®
£¨2£©ÈôÖ±ÏßlµÄбÂʲ»´æÔÚ£¬ÔòOAËùÔÚÖ±Ïß·½³ÌΪy=x£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=x}\\{{x}^{2}+2{y}^{2}=8}\end{array}\right.$£¬½âµÃA£¨$\frac{2\sqrt{6}}{3}£¬\frac{2\sqrt{6}}{3}$£©£¬
ͬÀíÇóµÃB£¨$\frac{2\sqrt{6}}{3}£¬-\frac{2\sqrt{6}}{3}$£©£¬
ÇóµÃ$|AB|=\frac{4\sqrt{6}}{3}$£®
×ÛÉÏ£¬µÃ$\frac{4\sqrt{6}}{3}¡Ü|AB|¡Ü2\sqrt{3}$£®
µãÆÀ ±¾ÌâÊÇÖ±ÏßÓëÔ²£¬Ö±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÖ±ÏߺÍÔ²µÄλÖùØϵ£¬¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬ÑµÁ·ÁËÏòÁ¿ÔÚÇó½âÖ±ÏßÓëԲ׶ÇúÏßÎÊÌâÖеÄÓ¦Ó㬿¼²éÁËÏÒ³¤¹«Ê½µÄÔËÓã¬ÑµÁ·ÁËÀûÓò»µÈʽÇó½â×îÖµÎÊÌ⣬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®