题目内容
已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.
(1) 函数f(x)的单调递增区间为
和
,
单调递减区间为
.
(2)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556778931.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556794918.png)
单调递减区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556809747.png)
(2)见解析
(1)由题意得f′(x)=12x2-2a.
当a≤0时,f′(x)≥0恒成立,此时f(x)的单调递增区间为(-∞,+∞).
当a>0时,f′(x)=12![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556825869.png)
,
此时函数f(x)的单调递增区间为
和
,
单调递减区间为
.
(2)证明:由于0≤x≤1,故当a≤2时,f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2.
当a>2时,f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2.
设g(x)=2x3-2x+1,0≤x≤1,则
g′(x)=6x2-2=6![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556903798.png)
.
于是
所以g(x)min=g
=1-
>0.
所以当0≤x≤1时,2x3-2x+1>0.
故f(x)+|a-2|≥4x3-4x+2>0.
当a≤0时,f′(x)≥0恒成立,此时f(x)的单调递增区间为(-∞,+∞).
当a>0时,f′(x)=12
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556825869.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556841862.png)
此时函数f(x)的单调递增区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556778931.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556794918.png)
单调递减区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556809747.png)
(2)证明:由于0≤x≤1,故当a≤2时,f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2.
当a>2时,f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2.
设g(x)=2x3-2x+1,0≤x≤1,则
g′(x)=6x2-2=6
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556903798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556919805.png)
于是
x | 0 | ![]() | ![]() | ![]() | 1 |
g′(x) | | - | 0 | + | |
g(x) | 1 | 减 | 极小值 | 增 | 1 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556981682.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040556997529.png)
所以当0≤x≤1时,2x3-2x+1>0.
故f(x)+|a-2|≥4x3-4x+2>0.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目