题目内容
8.定义$\frac{n}{{p}_{1}+{p}_{2}+p+…+{p}_{n}}$为n个正数p1,p2,…,pn的“调和倒数”.若数列{an}的前n项的“调和倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{2}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{9}{b}_{10}}$=$\frac{9}{40}$.分析 数列{an}的前n项的“调和倒数”为$\frac{1}{2n+1}$,设数列{an}的前n项和为Sn,可得$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,即Sn=2n2+n,利用递推式可得an=4n-1.可得bn=2n,再利用“裂项求和”即可得出.
解答 解:∵数列{an}的前n项的“调和倒数”为$\frac{1}{2n+1}$,设数列{an}的前n项和为Sn,
∴$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,
∴Sn=n(2n+1)=2n2+n,
当n=1时,a1=S1=3,
当n≥2时,an=Sn-Sn-1=2n2+n-[2(n-1)2+(n-1)]=4n-1,
当n=1时,上式也成立,∴an=4n-1.
∴又bn=$\frac{{a}_{n}+1}{2}$=2n,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{9}{b}_{10}}$=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{9}-\frac{1}{10})]$=$\frac{1}{4}(1-\frac{1}{10})$=$\frac{9}{40}$.
故答案为:$\frac{9}{40}$.
点评 本题考查了新定义“调和倒数”、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.
A. | [15°,90°] | B. | [60°,90°] | C. | [15°,105°] | D. | [30°,105°] |
A. | -4 | B. | 4 | C. | 14 | D. | -14 |