ÌâÄ¿ÄÚÈÝ
7£®ÎÒÊÐij´óÐÍÆóÒµ2008ÄêÖÁ2014ÄêÏúÊÛ¶îy£¨µ¥Î»£ºÒÚÔª£©µÄÊý¾ÝÈçϱíËùʾ£ºÄê·Ý | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
´úºÅt | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
ÏúÊÛ¶îy | 27 | 31 | 35 | 41 | 49 | 56 | 62 |
£¨2£©Çóy¹ØÓÚtµÄÏßÐԻع鷽³Ì£¬Ïà¹ØÊý¾Ý±£ÁôÁ½Î»Ð¡Êý£»
£¨3£©ÀûÓÃËùÇó»Ø¹é·½³Ì£¬Ëµ³ö2008ÄêÖÁ2014Äê¸Ã´óÐÍÆóÒµÏúÊÛ¶îµÄ±ä»¯Çé¿ö£¬²¢Ô¤²â¸ÃÆóÒµ2015ÄêµÄÏúÊ۶Ïà¹ØÊý¾Ý±£ÁôÁ½Î»Ð¡Êý£®
¸½£º»Ø¹éÖ±ÏßµÄбÂʵÄ×îС¶þ³Ë·¨¹À¼Æ¹«Ê½£ºb=$\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$£®
·ÖÎö £¨1£©Óиø¶¨µÄ×ø±êϵÖÐÃè³ö¸÷×éÊý¾Ý¶ÔÓ¦µÄµã£¬¿ÉµÃÄê·Ý´úºÅÓëÏúÊÛ¶îµÄÉ¢µãͼ£»
£¨2£©¸ù¾ÝËù¸øµÄÊý¾Ý£¬ÀûÓÃ×îС¶þ³Ë·¨¿ÉµÃºá±êºÍ×ݱêµÄƽ¾ùÊý£¬ºá±êºÍ×ݱêµÄ»ýµÄºÍ£¬Óëºá±êµÄƽ·½ºÍ£¬´úÈ빫ʽÇó³öbµÄÖµ£¬ÔÙÇó³öaµÄÖµ£¬Ð´³öÏßÐԻع鷽³Ì£®
£¨3£©¸ù¾ÝÉÏÒ»ÎÊ×ö³öµÄÏßÐԻع鷽³Ì£¬´úÈëËù¸øµÄtµÄÖµ£¬Ô¤²â¸ÃµØÇø2015ÄêµÄÏúÊ۶
½â´ð ½â£º£¨1£©Äê·Ý´úºÅÓëÏúÊÛ¶îµÄÉ¢µãͼÈçÏÂËùʾ£º
£¨2£©ÓÉÒÑÖªÖеÄÊý¾Ý¿ÉµÃ£º
$\overline{t}$=$\frac{1}{7}$£¨1+2+3+4+5+6+7£©=4£¬
$\overline{y}$=$\frac{1}{7}$£¨27+31+35+41+49+56+62£©=43£¬
$\sum _{i=1}^{7}{t}_{i}{y}_{i}$=1373£¬$\sum _{i=1}^{7}{{t}_{i}}^{2}$=140£¬
¹Ê$\hat{b}$=$\frac{\sum _{i=1}^{7}{t}_{i}{y}_{i}-7\overline{t}\overline{y}}{\sum _{i=1}^{7}{{t}_{i}}^{2}-7{\overline{t}}^{2}}$=$\frac{1373-1204}{140-112}$=$\frac{169}{28}$¡Ö6.04£¬
Ôò$\hat{a}$=$\overline{y}$-6.04$\overline{t}$=18.84£¬
¹Êy¹ØÓÚtµÄÏßÐԻع鷽³Ì$\hat{y}$=6.04x+18.84£¬
£¨3£©2015ÄêµÄÄê·Ý´úºÅΪ8£¬
µ±t=8ʱ£¬$\hat{y}$=6.04¡Á8+18.84=67.16£¬
¹ÊÔ¤²â¸ÃÆóÒµ2015ÄêµÄÏúÊÛ¶îԼΪ67.16ÒÚÔª
µãÆÀ ±¾Ì⿼²éÏßÐԻعé·ÖÎöµÄÓ¦Ó㬱¾Ìâ½âÌâµÄ¹Ø¼üÊÇÀûÓÃ×îС¶þ³Ë·¨ÈÏÕæ×ö³öÏßÐԻع鷽³ÌµÄϵÊý£¬ÕâÊÇÕû¸öÌâÄ¿×ö¶ÔµÄ±Ø±¸Ìõ¼þ£¬±¾ÌâÊÇÒ»¸ö»ù´¡Ì⣮
A£® | $\frac{1}{3}$ | B£® | $\frac{1}{5}$ | C£® | $\frac{1}{7}$ | D£® | $\frac{1}{9}$ |
A£® | $£¨{1£¬1+\frac{{\sqrt{2}}}{2}}£©$ | B£® | $£¨{1+\frac{{\sqrt{2}}}{2}£¬+¡Þ}£©$ | C£® | $£¨{1£¬1+\sqrt{2}}£©$ | D£® | $£¨{1+\sqrt{2}£¬+¡Þ}£©$ |
A£® | ¶ÔÈÎÒâx¡Ý2£¬¶¼ÓÐx2£¼4 | B£® | ¶Ôx£¼2£¬¶¼ÓÐx2¡Ý4 | ||
C£® | ´æÔÚx¡Ý2£¬Ê¹x2£¼4 | D£® | ´æÔÚx£¼2£¬Ê¹x2¡Ý4 |
A£® | {£¨1£¬1£©} | B£® | {£¨-1£¬1£©£¬£¨1£¬1£©} | C£® | $[{\frac{1}{2}£¬+¡Þ}£©$ | D£® | $[{\frac{{\sqrt{2}}}{2}£¬+¡Þ}£©$ |
A£® | $\frac{5}{6}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{3}{4}$ |