题目内容
19.以下四个命题中,其中真命题的个数为( )①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R使得x2+x+1<0.则¬p:?x∈R均有x2+x+1≥0;
③两个随机变量的线性相关性越强,则相关系数就越接近于1
④命题p:“x>3“是“x>5“的充分不必要条件.
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 对于①,从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样系统抽样;
对于②,运用特殊值判断出错误命题,
对于③两个随机变量的线性相关性即可判断出真假.
对于④根据两者的范围大小判断.
解答 解:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样不是分层抽样,命题不正确不正确,
②命题p:?x∈R使得x2+x+1<0.则¬p:?x∈R均有x2+x+1≥0,命题正确.
③两个随机变量的线性相关性越强,则相关系数就越接近于±1,命题不正确.
④命题p:“x>3”是“x>5”的必要不充分条件,命题不正确;
故选:A
点评 本题考查了简易逻辑的判定方法、随机变量的相关性、以及抽样方法,考查了推理能力,属于基础题.
练习册系列答案
相关题目
7.我市某大型企业2008年至2014年销售额y(单位:亿元)的数据如下表所示:
(1)在下表中,画出年份代号与销售额的散点图;
(2)求y关于t的线性回归方程,相关数据保留两位小数;
(3)利用所求回归方程,说出2008年至2014年该大型企业销售额的变化情况,并预测该企业2015年的销售额,相关数据保留两位小数.
附:回归直线的斜率的最小二乘法估计公式:b=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$.
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售额y | 27 | 31 | 35 | 41 | 49 | 56 | 62 |
(2)求y关于t的线性回归方程,相关数据保留两位小数;
(3)利用所求回归方程,说出2008年至2014年该大型企业销售额的变化情况,并预测该企业2015年的销售额,相关数据保留两位小数.
附:回归直线的斜率的最小二乘法估计公式:b=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$.
11.设f(x)=cos2x-$\sqrt{3}$sin2x,把y=f(x)的图象向左平移φ(φ>0)个单位后,恰好得到函数g(x)=-cos2x-$\sqrt{3}$sin2x的图象,则φ的值可以为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
9.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值,若对于任意的x∈[0,3],都有f(x)<c2成立,则实数c的取值范围为( )
A. | (-1,9) | B. | (-9,1) | C. | (-∞,-1)∪(9,+∞) | D. | (-∞,-9)∪(1,+∞) |