题目内容
12.命题“存在x≥2,使x2≥4”的否定是( )A. | 对任意x≥2,都有x2<4 | B. | 对x<2,都有x2≥4 | ||
C. | 存在x≥2,使x2<4 | D. | 存在x<2,使x2≥4 |
分析 直接利用特称命题的否定是全称命题,写出结果即可.
解答 解:因为特称命题的否定是全称命题,
所以,命题“存在x≥2,使x2≥4”的否定是:对任意x≥2,都有x2<4.
故选:A.
点评 本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关题目
7.我市某大型企业2008年至2014年销售额y(单位:亿元)的数据如下表所示:
(1)在下表中,画出年份代号与销售额的散点图;
(2)求y关于t的线性回归方程,相关数据保留两位小数;
(3)利用所求回归方程,说出2008年至2014年该大型企业销售额的变化情况,并预测该企业2015年的销售额,相关数据保留两位小数.
附:回归直线的斜率的最小二乘法估计公式:b=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$.
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售额y | 27 | 31 | 35 | 41 | 49 | 56 | 62 |
(2)求y关于t的线性回归方程,相关数据保留两位小数;
(3)利用所求回归方程,说出2008年至2014年该大型企业销售额的变化情况,并预测该企业2015年的销售额,相关数据保留两位小数.
附:回归直线的斜率的最小二乘法估计公式:b=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$.