题目内容
【题目】下列命题中,正确的个数是__________.(1)已知,则“”是“”的充分不必要条件;(2)已知,则“”是“”的必要不充分条件;(3)命题“p或q”为真命题,则“命题p”和“命题q”均为真命题;(4)命题“若,则”的逆否命题是真命题.
【答案】2
【解析】
对于(1),因为,,反之不成立,即可判断出;对于(2),由,反之不成立,即可判断出;对于(3),利用“或命题”的意义即可判断出;对于(4),利用原命题与逆否命题的关系,即可判断出其真假.
对于(1),因为,,反之不成立,因此“”是“”的必要不充分条件,故(1)不正确;
对于(2),由于,由,反之不成立,可得“”是“”的必要不充分条件,故(2)正确;
对于(3),命题“”为真命题,则“命题”和“命题”至少有一个为真命题,故(3)不正确;
对于(4),由于命题“若,则”是真命题,所以其逆否命题是是真命题,故(4)正确.
故答案为:2.
【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间内,按,,,,,分成6组,其频率分布直方图如图所示.
(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”;
男 | 女 | 合计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
合计 | 100 |
(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:
网购总次数 | 支付宝支付次数 | 银行卡支付次数 | 微信支付次数 | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为,求的数学期望.
附:观测值公式:
临界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】从一批草莓中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
须数(个) | 10 | 5 | 20 | 15 |
(1)根据频数分布表计算草莓的重量在的频率;
(2)用分层抽样的方法从重量在和的草莓中共抽取5个,其中重量在的有几个?
(3)从(2)中抽出的5个草莓中任取2个,求重量在和中各有1个的概率.