题目内容

如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,
.则⊙O的半径为(    ).

A. 6     B. 13          C.       D.
C
分析:延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.
解答:解:延长AO交BC于D,

连接OB,
∵⊙O过B、C,
∴O在BC的垂直平分线上,
∵AB=AC,圆心O在等腰Rt△ABC的内部,
∴AD⊥BC,BD=DC=3,AO平分∠BAC,
∵∠BAC=90°,
∴∠ADB=90°,∠BAD=45°,
∴∠BAD=∠ABD=45°,
∴AD=BD=3,
∴OD=3-1=2,
由勾股定理得:OB==
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网