题目内容
10.已知双曲线与椭圆$\frac{x^2}{64}+\frac{y^2}{16}=1$有相同的焦点,若双曲线的一条渐近线方程是$x+\sqrt{3}y=0$,则双曲线的方程为$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{12}=1$.分析 求出椭圆的焦点坐标,可得双曲线的焦点坐标,根据双曲线的一条渐近线方程为$x+\sqrt{3}y=0$,设双曲线的方程为x2-3y2=λ,即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{\frac{λ}{3}}=1$,可得λ+$\frac{1}{3}$λ=48,即可求出双曲线的方程.
解答 解:椭圆$\frac{x^2}{64}+\frac{y^2}{16}=1$的焦点坐标为($±4\sqrt{3}$,0),
∴双曲线的焦点坐标为($±4\sqrt{3}$,0),
∵双曲线的一条渐近线方程为$x+\sqrt{3}y=0$,
∴设双曲线的方程为x2-3y2=λ,
即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{\frac{λ}{3}}=1$
∴λ+$\frac{1}{3}$λ=48,
∴λ=36,
∴双曲线的方程为$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{12}=1$.
故答案为:$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{12}=1$.
点评 本题考查双曲线的方程,考查椭圆、双曲线的几何性质,考查学生的计算能力,确定双曲线的焦点坐标是关键.
练习册系列答案
相关题目
18.若复数z满足(3-4i)z=4+3i,则$|{\overline z}|$的值为( )
A. | $\frac{4}{5}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 4 |
5.设f′(x)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )
A. | 不存在 | B. | 与x轴平行或重合 | C. | 与x轴垂直 | D. | 与x轴相交不垂直 |
20.设函数F(x)=$\frac{f(x)}{{e}^{x}}$是定义在R上的函数,其中f(x)的导函数为f′(x),满足f′(x)<f(x)对于x∈R恒成立,则( )
A. | f(2)>e2f(0),f(2012)<e2012f(0) | B. | f(2)<e2f(0),f(2012)<e2012f(0) | ||
C. | f(2)>e2f(0),f(2012)>e2012f(0) | D. | f(2)<e2f(0),f(2012)>e2012f(0) |