题目内容
【题目】已知,函数,(是自然对数的底数).
(Ⅰ)讨论函数极值点的个数;
(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.
【答案】(1)当时,没有极值点,当时,有一个极小值点.(2)
【解析】试题分析 :(1),分,讨论,当时,对,,当时,解得,在上是减函数,在上是增函数。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设 ,所以 ,设 ,则,且是增函数,所以 。所以分和k>1讨论。
试题解析:(Ⅰ)因为,所以,
当时,对,,
所以在是减函数,此时函数不存在极值,
所以函数没有极值点;
当时,,令,解得,
若,则,所以在上是减函数,
若,则,所以在上是增函数,
当时,取得极小值为,
函数有且仅有一个极小值点,
所以当时,没有极值点,当时,有一个极小值点.
(Ⅱ)命题“,”是假命题,则“,”是真命题,即不等式在区间内有解.
若,则设 ,
所以 ,设 ,
则,且是增函数,所以
当时,,所以在上是增函数,
,即,所以在上是增函数,
所以,即在上恒成立.
当时,因为在是增函数,
因为, ,
所以在上存在唯一零点,
当时,,在上单调递减,
从而,即,所以在上单调递减,
所以当时,,即.
所以不等式在区间内有解
综上所述,实数的取值范围为.
练习册系列答案
相关题目