题目内容

【题目】已知为抛物线的焦点,为其标准线与轴的交点,过的直线交抛物线两点,为线段的中点,且,则__________

【答案】8.

【解析】分析:求得抛物线的焦点和准线方程,可得E的坐标,设过F的直线为y=k(x-1),代入抛物线方程y2=4x,运用韦达定理和中点坐标公式,可得M的坐标,运用两点的距离公式可得k,再由抛物线的焦点弦公式,计算可得所求值.

详解:F(1,0)为抛物线C:y2=4x的焦点,
E(-1,0)为其准线与x轴的交点,
设过F的直线为y=k(x-1),
代入抛物线方程y2=4x,可得
k2x2-(2k2+4)x+k2=0,
A(x1,y1),B(x2,y2),

中点

解得k2=1,x1+x2=6,由抛物线的定义可得|AB|=x1+x2+2=8,故答案为8.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网