题目内容
【题目】今年4月23日我市正式宣布实施“3+1+2”的高考新方案,“3”是指必考的语文、数学、外语三门学科,“1”是指在物理和历史中必选一科,“2”是指在化学、生物、政治、地理四科中任选两科.为了解我校高一学生在物理和历史中的选科意愿情况,进行了一次模拟选科. 已知我校高一参与物理和历史选科的有1800名学生,其中男生1000人,女生800人. 按分层抽样的方法从中抽取了36个样本,统计知其中有17个男生选物理,6个女生选历史.
(I)根据所抽取的样本数据,填写答题卷中的列联表. 并根据统计量判断能否有的把握认为选择物理还是历史与性别有关?
(II)在样本里选历史的人中任选4人,记选出4人中男生有人,女生有人,求随机变量 的分布列和数学期望.(的计算公式见下),临界值表:
【答案】(I)没有90%的把握认为选择物理还是历史与性别有关;(II)见解析
【解析】
(I)由条件知,按分层抽样法抽取的36个样本数据中有个男生,16个女生,根据题意列出列联表,求得的值,即可得到结论.
(II)由(I)知在样本里选历史的有9人. 其中男生3人,女生6人,求得可能的取值有,进而求得相应的概率,列出随机变量的分布列,利用公式求解期望.
(I)由条件知,按分层抽样法抽取的36个样本数据中有个男生,16个女生,结合题目数据可得列联表:
男生 | 女生 | 合计 | |
选物理 | 17 | 3 | 20 |
选历史 | 10 | 6 | 16 |
合计 | 27 | 9 |
得
而,
所以没有90%的把握认为选择物理还是历史与性别有关.
(II)由(I)知在样本里选历史的有9人. 其中男生3人,女生6人.
所以可能的取值有.
且,;,,
所以的分布列为:
2 | 0 | |||
所以的期望.
【题目】某印刷厂为了研究单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册) | |||||
单册成本(元) |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到);
印刷册数(千册) | ||||||
单册成本(元) | ||||||
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | |||||
残差 |
②分别计算模型甲与模型乙的残差平方和,并通过比较,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为千册,若印刷厂以每册元的价格将书籍出售给订货商,求印刷厂二次印刷千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).