题目内容
【题目】某印刷厂为了研究单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册) | |||||
单册成本(元) |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到);
印刷册数(千册) | ||||||
单册成本(元) | ||||||
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | |||||
残差 |
②分别计算模型甲与模型乙的残差平方和,并通过比较,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为千册,若印刷厂以每册元的价格将书籍出售给订货商,求印刷厂二次印刷千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).
【答案】(1)①见解析②模型乙的拟合效果更好(2)印刷利润元.
【解析】分析:(Ⅰ)利用所给公式和表格数据完成表格即可,再计算出两个模型的残差平方和,进而比较其模拟效果;(Ⅱ)利用模拟函数进行估计即可.
详解:(1)经计算,可得下表:
印刷册数(千册) | ||||||
单册成本(元) | ||||||
模型甲 | 估计值 | img src="http://thumb.zyjl.cn/questionBank/Upload/2019/04/14/17/ff6aa6c6/SYS201904141739112489792598_DA/SYS201904141739112489792598_DA.015.png" width="24" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" /> | ||||
残差 | ||||||
模型乙 | 估计值 | |||||
残差 |
②,,,
故模型乙的拟合效果更好;
(2)二次印刷千册,由(1)可知,单册书印刷成本为(元),
故印刷总成本为(元),印刷利润元.
【题目】2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动” .下表是我市一主干路口监控设备抓拍的5个月内 “驾驶员不礼让斑马线”行为统计数据:
月份 | |||||
违章驾驶员人数 |
(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;
(Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;
(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下列联表:
不礼让斑马线 | 礼让斑马线 | 合计 | |
驾龄不超过年 | |||
驾龄年以上 | |||
合计 |
能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?