题目内容
【题目】已知函数,.
(1)求的最大值和最小值;
(2)若关于x的方程在上有两个不同的实根,求实数的取值范围.
【答案】(1)最大值为,最小值为;(2).
【解析】
(1)利用二倍角的余弦公式、诱导公式以及辅助角公式化简函数的解析式为,由计算出的取值范围,结合正弦函数的基本性质可求出函数在区间上的最大值和最小值;
(2)由,可得出,令,将问题转化为直线与函数在区间上的图象有两个交点,利用数形结合思想能求出实数的取值范围.
(1),
,,,
因此,函数在区间上的最大值为,最小值为;
(2)由,即,得.
令,则直线与函数在区间上的图象有两个交点,如下图所示:
由图象可知,当时,即当时,直线与函数在区间上的图象有两个交点.
因此,实数的取值范围是.
练习册系列答案
相关题目
【题目】某地区某农产品近几年的产量统计如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代码t | 1 | 2 | 3 | 4 | 5 | 6 |
年产量y(万吨) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根据表中数据,建立关于的线性回归方程;
(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.(参考数据:,计算结果保留小数点后两位)