ÌâÄ¿ÄÚÈÝ
11£®¹«ÔªÇ°3ÊÀ¼Í£¬¹ÅÏ£À°Å·¼¸ÀïµÃÔÚ¡¶¼¸ºÎÔ±¾¡·ÀïÌá³ö£º¡°ÇòµÄÌå»ý£¨V£©ÓëËüµÄÖ±¾¶£¨D£©µÄÁ¢·½³ÉÕý±È¡±£¬´Ë¼´V=kD3£¬Å·¼¸ÀïµÃδ¸ø³ökµÄÖµ.17ÊÀ¼ÍÈÕ±¾Êýѧ¼ÒÃǶÔÇóÇòµÄÌå»ýµÄ·½·¨»¹²»Á˽⣬ËûÃǽ«Ìå»ý¹«Ê½V=kD3Öеij£Êýk³ÆΪ¡°Á¢Ô²ÂÊ¡±»ò¡°Óñ»ýÂÊ¡±£®ÀàËƵأ¬¶ÔÓڵȱßÔ²Öù£¨Öá½ØÃæÊÇÕý·½ÐεÄÔ²Öù£©¡¢Õý·½ÌåÒ²¿ÉÀûÓù«Ê½V=kD3ÇóÌå»ý£¨ÔڵȱßÔ²ÖùÖУ¬D±íʾµ×ÃæÔ²µÄÖ±¾¶£»ÔÚÕý·½ÌåÖУ¬D±íʾÀⳤ£©£®¼ÙÉèÔËÓôËÌå»ý¹«Ê½ÇóµÃÇò£¨Ö±¾¶Îªa£©¡¢µÈ±ßÔ²Öù£¨µ×ÃæÔ²µÄÖ±¾¶Îªa£©¡¢Õý·½Ì壨ÀⳤΪa£©µÄ¡°Óñ»ýÂÊ¡±·Ö±ðΪk1¡¢k2¡¢k3£¬ÄÇôk1£ºk2£ºk3£¨¡¡¡¡£©A£® | $\frac{1}{4}£º\frac{1}{6}£º\frac{1}{¦Ð}$ | B£® | $\frac{¦Ð}{6}£º\frac{¦Ð}{4}$£º2 | C£® | 2£º3£º2¦Ð | D£® | $\frac{¦Ð}{6}£º\frac{¦Ð}{4}$£º1 |
·ÖÎö ¸ù¾ÝÇò¡¢Ô²Öù¡¢Õý·½ÌåµÄÌå»ý¼ÆË㹫ʽ¡¢Àà±ÈÍÆÁ¦¼´¿ÉµÃ³ö£®
½â´ð ½â£º¡ß${V_1}=\frac{4}{3}¦Ð{R^3}=\frac{4}{3}¦Ð{£¨\frac{a}{2}£©^3}=\frac{¦Ð}{6}{a^3}⇒{k_1}=\frac{¦Ð}{6}$£»
${V_2}=¦Ð{R^2}a=¦Ð{£¨\frac{a}{2}£©^2}a=\frac{¦Ð}{4}{a^3}⇒{k_2}=\frac{¦Ð}{4}$£»
${V_3}={a^3}⇒{k_3}=1$£»
¹Ê${k_1}£º{k_2}£º{k_3}=\frac{¦Ð}{6}£º\frac{¦Ð}{4}£º1$£®
µãÆÀ ±¾Ì⿼²éÁËÇò¡¢Ô²Öù¡¢Õý·½ÌåµÄÌå»ý¼ÆË㹫ʽ¡¢Àà±ÈÍÆÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿