题目内容

13.已知函数f(x)=$\left\{\begin{array}{l}(4-a)x,x<2\\{a^x},x≥2\end{array}\right.$在R上单调递增,则a的取值范围是(  )
A.(1,4]B.(2,4)C.[2,4)D.(4,+∞)

分析 根据分段函数的单调性的性质进行求解即可.

解答 解:若函数f(x)=$\left\{\begin{array}{l}(4-a)x,x<2\\{a^x},x≥2\end{array}\right.$在R上单调递增,
则$\left\{\begin{array}{l}{4-a>0}\\{a>1}\\{2(4-a)≤{a}^{2}}\end{array}\right.$,
即$\left\{\begin{array}{l}{a<4}\\{a>1}\\{a≥2或a≤-4}\end{array}\right.$,
解得2≤a<4,
故a的取值范围是[2,4),
故选:C.

点评 本题主要考查函数单调性的性质,根据分段函数的单调性是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网