题目内容
1.在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,直线PC与平面ABCD所成角为45°,AB=2.(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若E为PC的中点,求证:平面ADE⊥平面PCD.
分析 (Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,故BC=$\sqrt{3}$,AC=2,由此能求出四棱锥P-ABCD的体积V.
(Ⅱ)由AE⊥PC,AE⊥CD,然后证明AE⊥平面PCD,由此能证明平面ADE⊥平面PCD.
解答 解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=$\sqrt{3}$,AC=2…(2分)
在Rt△ACD中,AC=2,∠CAD=60°,CD=2$\sqrt{3}$…(4分)
∵S四边形ABCD=$\frac{1}{2}$AB•BC+$\frac{1}{2}$AC•CD=$\frac{1}{2}$×1×$\sqrt{3}$+$\frac{1}{2}$×2×2$\sqrt{3}$=$\frac{5}{2}$$\sqrt{3}$,
则V=$\frac{1}{3}$×$\frac{5}{2}$$\sqrt{3}$×2=$\frac{5\sqrt{3}}{3}$…(6分)
证:(Ⅱ)∵PA⊥平面ABCD,
∴PA⊥CD…(7分)
又直线PC与平面ABCD所成角为45°,
∴AC=PA,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,AB=2.
∴AC=4,PA=4,E为PC的中点,
∴AE⊥PC
PA⊥平面ABCD,∠ACD=90°
∴CD⊥平面PAC,…(8分),AE?平面PAC,∴AE⊥CD
PC∩CD=C,∴AE⊥平面PCD…(10分),
∵AE?平面AEF,
∴平面ADE⊥平面PCD…(12分
点评 本题考查棱锥的体积的求法,考查平面与平面垂直的证明,解题时要认真审题,注意合理地化立体问题为平面问题.
练习册系列答案
相关题目
8.若角α始边为x轴非负半轴,终边上一点A(1,-$\sqrt{3}$),则sinα等于( )
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
9.某次运动会在我市举行,为了搞好接待工作,组委会招募了18名男志愿者和12名女志愿者,调查发现,男、女志愿者中分别由11人和5人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下2×2列联表:
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)从女志愿者中抽取2人参加接待工作,若其中喜爱运动的人数为ξ,求ξ的分布列和数学期望Eξ.
参考公式:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
(1)根据以上数据完成以下2×2列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 18 | |
女 | 5 | 12 | |
总计 | 30 |
(3)从女志愿者中抽取2人参加接待工作,若其中喜爱运动的人数为ξ,求ξ的分布列和数学期望Eξ.
参考公式:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(x2≥x0) | 0.40 | 0.25 | 0.10 | 0.010 |
x0 | 0.708 | 1.323 | 2.706 | 6.635 |
13.已知函数f(x)=$\left\{\begin{array}{l}(4-a)x,x<2\\{a^x},x≥2\end{array}\right.$在R上单调递增,则a的取值范围是( )
A. | (1,4] | B. | (2,4) | C. | [2,4) | D. | (4,+∞) |
6.已知四面体ABCD的棱长均为$\sqrt{2}$,则下列结论中错误的是( )
A. | AC⊥BD | |
B. | 若该四面体的各顶点在同一球面上,则该球的体积为3π | |
C. | 直线AB与平面BCD所成的角的余弦值为$\frac{\sqrt{3}}{3}$ | |
D. | 该四面体的体积为$\frac{1}{3}$ |
10.若复数z=(cosθ-$\frac{3}{5}$)+(sinθ-$\frac{4}{5}$)i为纯虚数,则tanθ=( )
A. | $\frac{4}{3}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
11.把直线l:x+$\sqrt{3}$y=0绕原点按顺时针方向旋转30°,得到直线m,则直线m与圆x2+y2-4x+1=0的位置关系是( )
A. | 直线与圆相切 | B. | 直线与圆相交但不过圆心 | ||
C. | 直线与圆相离 | D. | 直线过圆心 |