题目内容
【题目】如图,已知椭圆C: =1(a>b>0)的离心率为 ,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求 的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR||OS|为定值.
【答案】
(1)解:依题意,得a=2, ,
∴c= ,b= =1,
故椭圆C的方程为
(2)解:方法一:点M与点N关于x轴对称,
设M(x1,y1),N(x1,﹣y1),不妨设y1>0.
由于点M在椭圆C上,所以 . (*)
由已知T(﹣2,0),则 , ,
∴
=(x1+2)2﹣
=
= .
由于﹣2<x1<2,
故当 时, 取得最小值为 .
由(*)式, ,故 ,
又点M在圆T上,代入圆的方程得到 .
故圆T的方程为: .
方法二:点M与点N关于x轴对称,
故设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),
不妨设sinθ>0,由已知T(﹣2,0),
则
=(2cosθ+2)2﹣sin2θ
=5cos2θ+8cosθ+3
= .
故当 时, 取得最小值为 ,
此时 ,
又点M在圆T上,代入圆的方程得到 .
故圆T的方程为: .
(3)解:方法一:设P(x0,y0),
则直线MP的方程为: ,
令y=0,得 ,
同理: ,
故 (**)
又点M与点P在椭圆上,
故 , ,
代入(**)式,
得: .
所以|OR||OS|=|xR||xS|=|xRxS|=4为定值.
方法二:设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),
不妨设sinθ>0,P(2cosα,sinα),其中sinα≠±sinθ.
则直线MP的方程为: ,
令y=0,得 ,
同理: ,
故 .
所以|OR||OS|=|xR||xS|=|xRxS|=4为定值
【解析】(1)依题意,得a=2, ,由此能求出椭圆C的方程.(2)法一:点M与点N关于x轴对称,设M(x1 , y1),N(x1 , ﹣y1),设y1>0.由于点M在椭圆C上,故 .由T(﹣2,0),知 = ,由此能求出圆T的方程.
法二:点M与点N关于x轴对称,故设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),设sinθ>0,由T(﹣2,0),得 = ,由此能求出圆T的方程.(3)法一:设P(x0 , y0),则直线MP的方程为: ,令y=0,得 ,同理: ,…故 ,由此能够证明|OR||OS|=|xR||xS|=|xRxS|=4为定值.
法二:设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),设sinθ>0,P(2cosα,sinα),其中sinα≠±sinθ.则直线MP的方程为: ,由此能够证明|OR||OS|=|xR||xS|=|xRxS|=4为定值.
【考点精析】掌握圆的标准方程和椭圆的标准方程是解答本题的根本,需要知道圆的标准方程:;圆心为A(a,b),半径为r的圆的方程;椭圆标准方程焦点在x轴:,焦点在y轴:.
【题目】电容器充电后,电压达到100 V,然后开始放电,由经验知道,此后电压U随时间t变化的规律用公式U=Aebt(b<0)表示,现测得时间t(s)时的电压U(V)如下表:
t(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
U(V) | 100 | 75 | 55 | 40 | 30 | 20 | 15 | 10 | 10 | 5 | 5 |
试求:电压U对时间t的回归方程.(提示:对公式两边取自然对数,把问题转化为线性回归分析问题)
【题目】某公司经营一批进价为每件400元的商品,在市场调查时发现,此商品的销售单价x(元)与日销售量y(件)之间的关系如下表所示:
x/元 | 500 | 600 | 700 | 800 | 900 |
y/件 | 10 | 8 | 9 | 6 | 1 |
(1)求y关于x的回归直线方程.
(2)借助回归直线方程,预测销售单价为多少元时,日利润最大?