题目内容
【题目】已知函数f(x)=sinx﹣xcosx.
(1)讨论f(x)在(0,2π)上的单调性;
(2)若关于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有两个根,求实数m的取值范围.
(3)求证:当x∈(0, )时,f(x)< x3 .
【答案】
(1)解:f′(x)=cosx﹣(cosx﹣xsinx)=xsinx,
f'(x)>0x∈(0,π),f'(x)<0
x∈(π,2π)f(x)的递增区间(0,π),递减区间(π,2π);
(2)解:f(x)=x2﹣2πx+m,
设h(x)=x2﹣2πx+m=(x﹣π)2+m﹣π2,
由 ,解得,0<m<π2+π;
(3)证明:令g(x)=f(x)﹣ x3,
则g′(x)=x(sinx﹣x),
当x∈(0, )时,设t(x)=sinx﹣x,则t′(x)=cosx﹣1<0,
所以t(x)在x∈(0, )单调递减,t(x)=sinx﹣x<t(0)=0,
即sinx<x,所以g′(x)<0,
所以g(x)在(0, )上单调递减,所以g(x)<g(0)=0,
所以f(x)< x3.
【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)设h(x)=x2﹣2πx+m=(x﹣π)2+m﹣π2 , 根据二次函数的性质求出m的范围即可;(3)令g(x)=f(x)﹣ x3 , 求出函数的导数,根据函数的单调性求出g(x)<0,从而证出结论即可.
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量y(件) | 100 | 94 | 93 | 90 | 85 | 78 |
(1)求回归直线方程求回归直线方程.
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)