题目内容

10.化简:$\frac{a+1}{\sqrt{a}}$+$\frac{1+a}{\sqrt{1+a}}$+$\frac{1}{\sqrt{a}-\sqrt{a+1}}$=(  )
A.$\frac{2\sqrt{a}}{a}$B.$\frac{\sqrt{a}}{a}$C.$\frac{1}{a}$D.$\frac{2}{a}$

分析 利用分母有理化的原则将$\frac{1}{\sqrt{a}-\sqrt{a+1}}$化为$\frac{\sqrt{a}+\sqrt{a+1}}{(\sqrt{a}-\sqrt{a+1})(\sqrt{a}+\sqrt{a+1})}$即-($\sqrt{a}$+$\sqrt{1+a}$)的形式,进而可得答案.

解答 解:$\frac{a+1}{\sqrt{a}}$+$\frac{1+a}{\sqrt{1+a}}$+$\frac{1}{\sqrt{a}-\sqrt{a+1}}$
=$\sqrt{a}$+$\frac{1}{\sqrt{a}}$+$\sqrt{1+a}$+$\frac{\sqrt{a}+\sqrt{a+1}}{(\sqrt{a}-\sqrt{a+1})(\sqrt{a}+\sqrt{a+1})}$
=$\sqrt{a}$+$\frac{\sqrt{a}}{a}$+$\sqrt{1+a}$-($\sqrt{a}$+$\sqrt{1+a}$)
=$\frac{\sqrt{a}}{a}$,
故选:B

点评 本题考查的知识点是根式的运算与化简,其中将$\frac{1}{\sqrt{a}-\sqrt{a+1}}$化为-($\sqrt{a}$+$\sqrt{1+a}$)的形式,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网