题目内容
5.在数列{an}中,a1=32,an+1=an-4,则数列{an}的前n项和Sn的最大值是( )A. | 136 | B. | 140 | C. | 144 | D. | 148 |
分析 可得数列为等差数列且前8项为正数,第9项为0,从第10项开始为负数,可得前8或9项和最大,由求和公式计算可得.
解答 解:∵在数列{an}中,a1=32,an+1=an-4,
∴an+1-an=-4,即数列为公差为-4的等差数列,
∴an=a1+(n-1)d=32-4(n-1)=-4n+36,
令-4n+36≤0可得n≥9,
∴递减的等差数列{an}中前8项为正数,第9项为0,从第10项开始为负数,
∴数列{an}的前8或9项和最大,
由求和公式可得S8=8×32+$\frac{8×7}{2}$×(-4)=144
故选:C
点评 本题考查等差数列的求和公式和等差数列的判定,属基础题.
练习册系列答案
相关题目
15.不等式$\frac{{x}^{2}+2x+2}{x+2}$>1的解集是( )
A. | (-2,-1)∪(0,∞) | B. | (-∞,-1)∪(0,+∞) | C. | (0,+∞) | D. | (-2,-1) |
16.在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:
对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({t_i}-\bar\overline{t})({y_i}-\bar\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-\bar\overline{t})}^2}}}}$,$\hat a=\bar\overline{y}-\hat b\bar\overline{t}$.
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({t_i}-\bar\overline{t})({y_i}-\bar\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-\bar\overline{t})}^2}}}}$,$\hat a=\bar\overline{y}-\hat b\bar\overline{t}$.
13.在两个变量y与x的回归模型中,分别选择了四个不同的模型,且它们的R2的值的大小关系为:R2模型3<R2模型4<R2模型1<R2模型2,则拟合效果最好的是( )
A. | 模型1 | B. | 模型2 | C. | 模型3 | D. | 模型4 |
20.为了调查生活规律与患胃病是否与有关,某同学在当地随机调查了200名30岁以上的人,并根据调查结果制成了不完整的列联表如下:
(Ⅰ)补全列联表中的数据;
(Ⅱ)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
不患胃病 | 患胃病 | 总计 | |
生活有规律 | 60 | 40 | |
生活无规律 | 60 | 100 | |
总计 | 100 |
(Ⅱ)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
10.化简:$\frac{a+1}{\sqrt{a}}$+$\frac{1+a}{\sqrt{1+a}}$+$\frac{1}{\sqrt{a}-\sqrt{a+1}}$=( )
A. | $\frac{2\sqrt{a}}{a}$ | B. | $\frac{\sqrt{a}}{a}$ | C. | $\frac{1}{a}$ | D. | $\frac{2}{a}$ |