ÌâÄ¿ÄÚÈÝ
16£®ÈôÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=2ÇÒ|2$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$£¬ÔòÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ£¨¡¡¡¡£©A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{2¦Ð}{3}$ |
·ÖÎö °ÑÒÑÖªÊý¾Ý´úÈëÏòÁ¿µÄÄ£³¤¹«Ê½¿ÉµÃcos¦ÈµÄ·½³Ì£¬½âcos¦È¿ÉµÃ¼Ð½Ç£®
½â´ð ½â£ºÉèÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦È£¬
¡ß|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=2ÇÒ|2$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$£¬
¡à4${\overrightarrow{a}}^{2}$+4$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=12£¬
´úÈëÊý¾Ý¿ÉµÃ4+4¡Á1¡Á2¡Ácos¦È+4=12£¬
½âµÃcos¦È=$\frac{1}{2}$£¬¡à¦È=$\frac{¦Ð}{3}$
¹ÊÑ¡£ºB
µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýÓë¼Ð½Ç£¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ÒÑÖª¼¯ºÏA={-1£¬1}£¬B={x|x£¼a}£¬ÈôA¡ÉB=∅£¬Ôò£¨¡¡¡¡£©
A£® | a¡Ü-1 | B£® | a¡Ý-1 | C£® | a¡Ü1 | D£® | a£¾1 |
4£®ÒÑÖªlogax£¾logay£¨0£¼a£¼1£©£¬ÔòÏÂÁв»µÈʽºã³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£® | y2£¼x2 | B£® | tanx£¼tany | C£® | $\frac{1}{y}$£¼$\frac{1}{x}$ | D£® | $\sqrt{y}$£¼$\sqrt{x}$ |
11£®ÒÑÖªÊýÁÐ{an}ΪµÈ±ÈÊýÁУ¬a1=1£¬a9=3£¬Ôòa5=£¨¡¡¡¡£©
A£® | 2 | B£® | $\sqrt{3}$»ò$-\sqrt{3}$ | C£® | $\sqrt{3}$ | D£® | $-\sqrt{3}$ |
1£®Èô¼¯ºÏM={x|y=lg$\frac{2-x}{x}$}£¬N={x|x£¼1}£¬Ôò M¡É∁RN=£¨¡¡¡¡£©
A£® | £¨0£¬2] | B£® | £¨0£¬2£© | C£® | [1£¬2£© | D£® | £¨0£¬+¡Þ£© |
8£®Èô¼¯ºÏM={x|x2-2x£¼0}£¬N={x|x£¼1}£¬ÔòM¡É∁RN=£¨¡¡¡¡£©
A£® | £¨0£¬2] | B£® | £¨0£¬2£© | C£® | [1£¬2£© | D£® | £¨0£¬+¡Þ£© |
6£®ÒÑÖªÈýÀâ׶µÄµ×ÃæÊDZ߳¤ÎªaµÄÕýÈý½ÇÐΣ¬ÆäÕýÊÓͼÓ븩ÊÓͼÈçͼËùʾ£¬Èô²àÊÓͼµÄÃæ»ýΪ$\frac{3}{4}$£¬ÈýÀâ׶µÄÌå»ýΪ$\frac{1}{4}$£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£® | $\frac{\sqrt{3}}{4}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | $\frac{3}{4}$ | D£® | 1 |