题目内容
1.若集合M={x|y=lg$\frac{2-x}{x}$},N={x|x<1},则 M∩∁RN=( )A. | (0,2] | B. | (0,2) | C. | [1,2) | D. | (0,+∞) |
分析 求出M的解集,求出N的补集,根据交集的定义求出即可.
解答 解:∵集合M={x|y=lg$\frac{2-x}{x}$}={x|x(2-x)>0}=(0,2),
又∴N={x|x<1},
∴(CRN)=[1,+∞),
∴M∩∁RN=[1,2),
故选:C
点评 本题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
11.如图,在三棱柱ABC-A1B1C1中,B1C⊥AB,侧面BCC1B1为菱形.
(1)求证:平面ABC1⊥平面BCC1B1;
(2)如果点D,E分别为A1C1,BB1的中点,求证:DE∥平面ABC1.
(1)求证:平面ABC1⊥平面BCC1B1;
(2)如果点D,E分别为A1C1,BB1的中点,求证:DE∥平面ABC1.
12.已知抛物线C:y2=2px(p>0)的焦点为F,点E在C的准线上,且在x轴上方,线段EF的垂直平分线经过C上一点M,且与C的准线交于点N(-1,$\frac{3}{2}$),则|MF|=( )
A. | 5 | B. | 6 | C. | 10 | D. | 5或10 |
16.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2且|2$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
10.设点P(x,y),则“x=1且y=-2”是“点P在直线l:x-y-3=0上”的( )
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |