题目内容
【题目】在正方体中,点E是棱的中点,点F是线段上的一个动点.有以下三个命题:
①异面直线与所成的角是定值;
②三棱锥的体积是定值;
③直线与平面所成的角是定值.
其中真命题的个数是( )
A. 3 B. 2 C. 1 D. 0
【答案】B
【解析】
以A点为坐标原点,AB,AD,所在直线为x轴,y轴,z轴建立空间直角坐标系,
可得=(1,1,1),=(t-1,1,-t),可得=0,可得①正确;
由三棱锥的底面面积为定值,且∥,可得②正确;
可得=(t,1,-t),平面的一个法向量为=(1,1,1),可得不为定值可得③错误,可得答案.
解:以A点为坐标原点,AB,AD,所在直线为x轴,y轴,z轴建立空间直角坐标系,设正方体棱长为1,可得B(1,0,0),C(1,1,O),D(0,1,0),(0,0,1),(1,0,1),(1,1,1),(0,1,1),设F(t,1,1-t),(0≤t≤1),
可得=(1,1,1),=(t-1,1,-t),可得=0,故异面直线与所的角是定值,故①正确;
三棱锥的底面面积为定值,且∥,点F是线段上的一个动点,可得F点到底面的距离为定值,故三棱锥的体积是定值,故②正确;
可得=(t,1,-t),=(0,1,-1),=(-1,1,0),可得平面的一个法向量为=(1,1,1),可得不为定值,故③错误;
故选B.
练习册系列答案
相关题目