题目内容
以原点为顶点,以椭圆C:的左准为准线的抛物线交椭圆C的右准线交于A、B两点,则|AB|= 。
16
解析
已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在y轴上.(1)求双曲线的离心率,并写出其渐近线方程;(2)求椭圆的标准方程.
已知椭圆的离心率为,过顶点的直线与椭圆相交于两点.(1)求椭圆的方程;(2)若点在椭圆上且满足,求直线的斜率的值.
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。(1)求椭圆的方程;(2)是否存在斜率 的直线使直线与椭圆相交于不同的两点M,N满足,若存在,求直线l的方程;若不存在,说明理由。
右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 _________米.
双曲线=1的焦点为F1、F2,弦AB过F1且在双曲线的一支上,若 ,则为__________
如果正△ABC中,D∈AB,E∈AC,向量,那么以B,C为焦点且过点D,E的双曲线的离心率是
直线l过抛物线 (a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=
已知双曲线的左顶点为,右焦点为,为双曲线右支上一点,则最小值为 _________ .